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Abstract

In this paper, we introduce a multiscale stochastic simulation algorithm (MSSA) which makes use of Gillespie�s sto-
chastic simulation algorithm (SSA) together with a new stochastic formulation of the partial equilibrium assumption

(PEA). This method is much more efficient than SSA alone. It works even with a very small population of fast species.

Implementation details are discussed, and an application to the modeling of the heat shock response of E. Coli is

presented which demonstrates the excellent efficiency and accuracy obtained with the new method.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

In microscopic systems formed by living cells, the small number of reactant molecules can result in

dynamical behavior that is discrete and stochastic rather than continuous and deterministic [1–4]. To study
the influence of this stochastic behavior, stochastic simulation of the chemically reacting system is needed.

Gillespie�s stochastic simulation algorithm (SSA) [5,6] is well known as an essentially exact numerical

simulation method for well-stirred chemically reacting systems and is widely used in the simulation of

biochemical systems.

Because the SSA simulates every reaction event, it is inefficient for many realistic problems. The main

reason for the low efficiency of the SSA is related to the multiscale nature of the underlying problem.
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Multiscale behavior appears in a wide range of problems. The multiscale problem in biochemical simulation

has two aspects. The first is the timescale. Some reactions are much faster than others. Often the fast reac-

tions quickly reach a stable state and the dynamics of the system are driven by the slow reactions. The SSA

simulates every reaction and thus puts a great deal of effort into the more frequently occurring fast

reactions, even though they do not contribute much to the dynamics and stochasticity of the system. This
multiscale problem in time is known in the deterministic regime as stiffness [7]. Second, the populations of

different species are of widely different magnitude. Some species are present with a large population

while other species have only very few copies in a cell. Species with a small population should be modeled

by a discrete stochastic process, whereas species with a large population can be efficiently modeled by a

deterministic ordinary differential equation (ODE). SSA treats all of the species as discrete stochastic

processes.

In this paper, we use a model of the heat shock response (HSR) of E. Coli [8,9] as an example. The HSR

system describes the mechanism of how the bacteria E. Coli responds to a temperature increase. When ex-
posed to temperatures high enough to induce the denaturing (unfolding) of its constituent proteins, the E.

Coli bacterium derives some measure of protection from an elaborate heat shock response mechanism. One

of several important components of this mechanism is the heat shock sigma factor, r32. Elevated temper-

atures in the bacterium cause r32 to be produced through transcription and translation at a very rapid rate.

A free r32 molecule can bind to RNA polymerase (RNAP) and the resultant complex r32 : RNAP initiates

the transcription of genes that encode a variety of chaperone enzymes. These chaperones take care of dena-

tured proteins, either by refolding them or else by degrading them so that they will not cause problems by

aggregating. But a newly produced r32 molecule is usually much more likely to be promptly sequestered by
DNAK, one of those chaperone enzymes, an occurrence that precludes its binding to RNAP. The number

of free r32 molecules in the cell at any instant typically fluctuates over small (integer) values, with a time

average that may well be less than one. Both multiscale aspects are present in this problem: (1) stiffness re-

sults from the presence of reactions which operate at vastly different timescales (r32 þ DNAK $ r32 : DNAK
is very fast, whereas r32 þ RNAP $ r32 : RNAP is comparatively slow), and (2) there is a need to include in

the simulation species that are present in very small quantities, for example free r32 at typically around one

molecule and bound r32 at around 30–100 molecules, and species that are present with very large popula-

tions such as unfolded protein at more than 105 molecules. The details of the deterministic model for the
HSR system can be found in Ref. [8] and a stochastic version was discussed in Ref. [9]. In our stochastic

model, 28 species participate in 61 chemical reactions. It takes 90 s for a 1.4 GHz Pentium IV Linux work-

station to run one SSA simulation, which means more than 10 days for 10,000 runs. (Usually we desire to

run 10,000 SSA simulations to obtain a reasonably accurate distribution.) The size of the HSR system is

only moderate.

Important progress has been made towards efficient algorithms for discrete stochastic simulation. The

tau-leaping method [10] has been proposed which can take time steps much larger than the time for a single

reaction. By using a Poisson approximation, the tau-leaping method can ‘‘leap over’’ many fast reactions
and approximate the stochastic behavior of the system very well. The tau-leaping method makes a natural

connection between the SSA in the discrete stochastic regime, the explicit Euler method for the chemical

Langevin equation in the continuous stochastic regime, and the explicit Euler method for the reaction rate

equation (RRE) in the continuous deterministic regime. The implicit tau-leaping method [11] has been pro-

posed to overcome the stability problems of the tau-leaping method when it is applied to stiff stochastic

systems. The leaping methods show a promising direction to solve the multiscale stochastic problem.

But they have a limitation, in that they are based on the assumption that the propensity function aj(x), de-

fined so that aj(x) dt gives the probability that reaction Rj will fire in the next infinitesimal time interval
[t, t + dt), should not change significantly during each time step [10]. This requires the population of the

species to be large relative to one. Thus when the system involves species with populations smaller than

around 10, the leaping methods must be replaced by SSA. To the best of our knowledge, there has been
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no justifiable way to apply leaping methods to systems involving species that are present in very small

quantities.

Another possibility is the hybrid methods [12,?], which have recently been proposed to simulate multiscale

chemically reacting systems. The hybrid methods combine the traditional deterministic reaction rate equa-

tion (RRE), or alternatively the chemical Langevin equation, with the SSA. The idea is to split the system
into two regimes: the continuous regime and the discrete regime. RRE is used to simulate the fast reactions

between species with large populations. SSA is used for slow reactions or species with small populations. The

conditions [13] for the continuous regime are: ‘‘the number of instances of each molecular species in a reaction

in the continuous regime must be large relative to one, and the number of reaction events of each reaction occur-

ring within one time step of the numerical solver must be large relative to one.’’ If either condition is not sat-

isfied for a reaction channel, that reaction channel must be handled in the discrete regime.

The hybrid methods efficiently utilize the multiscale properties of the problem. They are advantageous

over the tau-leaping method when there are species with very small populations. But there are still some
unsolved problems. One is that these methods do not have a rigorous theoretical foundation. Another

important problem arises in the case when a reaction is fast but one of the corresponding reactants has

a small population. It does not satisfy the second requirement for the deterministic regime. Thus this reac-

tion will still be handled by the SSA, resulting in a very slow simulation. A typical such reaction is given by
S1 þ S2 $ S3; ð1Þ
where S1 has a small population but S2 has a large population, and the reactions for both directions are
fast. This situation occurs in the stochastic simulation of the HSR model, in which the important sigma

factor r32, which plays a crucial role in the heat shock response of E. Coli, has a small population but is

involved in fast reactions. If we must use SSA to simulate these fast reactions, the simulation will be very

slow. Neither the tau-leaping methods or the hybrid simulation methods can efficiently handle this situa-

tion. The difficulty is that the reaction affects the population of S1 significantly. The most extreme case

is when the state of S1 changes between zero and one. This actually occurs in the simulation of the HSR

model. The important question is, how can we treat this reaction efficiently but maintain the stochasticity?

Our MSSA method can handle this type of problem.
Quasi-steady state and partial equilibrium assumptions have often been used in the simulation of deter-

ministic kinetics systems [14–16]. In the deterministic case, the quasi-steady state assumption assumes that

on the time scale of interest, the instantaneous rates of change for some intermediate species are approx-

imately equal to zero. The partial equilibrium assumption assumes that some fast reactions are always

in equilibrium. In many cases these two assumptions are equivalent. The quasi-steady state assumption

focuses on the state while the partial equilibrium assumption concentrates on the reactions. These assump-

tions are often used to reduce the problem size or the stiffness.

The quasi-steady state assumption was extended to the discrete stochastic case, and used together with
SSA. The stochastic quasi-steady state assumption (SQSSA) [17] was shown to be very useful in simplifying

stochastic reaction kinetics. In this paper, we will focus on the partial equilibrium assumption, although the

discussion can also be applied to the quasi-steady state assumption.

There is another practical problem with the hybrid methods and with the SQSSA method. Some molec-

ular species are present in both the discrete and the continuous regimes, one in integer and one in floating

point. In those methods, the floating point values from the deterministic regime are rounded to integers in

the discrete regime. According to our analysis, this is not the best choice for the ‘‘fast reaction low popula-

tion’’ situation. We propose to use the mean value. This does not lead to a big difference when the popu-
lation is large. But if the population is very small, the difference between the floating point value and the

integer value is relatively large and cannot be neglected.

The purpose of this paper is to introduce the main ideas of the stochastic partial equilibrium assumption

and the MSSA algorithm, and to demonstrate the potential for accuracy and efficiency with this technique.
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Rigorous proofs have been omitted here. Interested readers can see the related paper [18] for a more rig-

orous discussion by probability theory. In contrast to the present paper, which concentrates on practical

issues with regard the use of MSSA on moderate to large size real-world problems, Ref. [18] provides a the-

oretical analysis, focusing on several simple test problems that can be thoroughly understood. Thus the two

papers are complementary.
Similar ideas have been proposed in the literature. A method called adiabatic elimination of fast vari-

ables [19] has been studied in the Markov approximation for the reduced dynamics in open systems. A the-

ory is presented on the elimination of fast variables to obtain an effective description in terms of a reduced

set of variables. A difference between that approach and ours is that the theory of adiabatic elimination of

fast variables is framed in terms of continuous Markov processes (described by a Langevin and Fokker–

Planck equation), not a jump Markov process (described by a master equation), which is the case we deal

with.

It has been observed that ‘‘it is the average occupancy over the individual microscopic events which deter-

mines the probability of gene expression’’ [13]. Our paper presents one way to deal with those ‘‘average’’

characteristics, which can also be evaluated using thermodynamic properties, for example the entropy

and Gibbs energy. Ackers et al. [20,21] developed a methodology for approximating statistical thermody-

namic binding events, and applied it to simulation of the k phage. Although the theoretical foundation for

that method has not been carefully studied, in practice this approximation works well in reproducing the

important properties of gene expression regulation. Our work is related to this approximating method. By

generalizing the partial equilibrium assumption to the statistical thermodynamic assumption, our work can

justify the use of the time-average effect from the formula of the propensities of the slow reaction channels.
We further address this relationship in the discussion in Section 7.

The outline of this paper is as follows. In Section 2, we briefly review the SSA method. In Section 3, we

introduce the stochastic partial equilibrium assumption (SPEA). In Section 4, we present the theory and the

formulae to approximate the propensity functions of the slow reactions, based on SPEA. In Section 5, we

discuss some implementation issues. Finally, in Section 6 numerical results are presented which demonstrate

the accuracy and efficiency of this method. A conclusion and further discussion are given in Section 7.
2. Background

Suppose the system involves N molecular species {S1, . . .,SN}. The state vector will be denoted by

X(t) = (X1(t), . . .,XN(t)), where Xi(t) is the number of molecules of species Si in the system at time t. M reac-

tion channels {R1, . . .,RM} are involved in the system. We assume that the system is well-stirred and in ther-

mal equilibrium. The dynamics of reaction channel Rj is characterized by the propensity function aj and by

the state change vector mj = (m1j, . . .,mNj): aj(x) dt gives the probability that one Rj reaction will occur in the

next infinitesimal time interval [t, t + dt), and mij gives the change in the Si molecular population induced by
one Rj reaction.

The dynamics of the system obeys the chemical master equation (CME):
oPðx; t j x0; t0Þ
ot

¼
XM
j¼1

½ajðx� mjÞPðx� mj; t j x0; t0Þ � ajðxÞP ðx; t j x0; t0Þ�; ð2Þ
where the function P(x,tjx0,t0) denotes the probability that X(t) will be x, given that X(t0) = x0. The CME is

hard to solve, both theoretically and numerically. An equivalent simulation method is the SSA [5,6]. Let
a0ðxÞ ¼
XM
j¼1

ajðxÞ: ð3Þ
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The time s to the next occurring reaction is the exponentially distributed random variable with mean 1/

a0(x). The index j of that reaction is the integer random variable with probability aj(x)/a0(x). SSA is a

Monte Carlo method based on these distributions. In each step, SSA generates two random numbers r1
and r2 in U(0,1), the uniform distribution on the interval (0,1). The time for the next reaction to occur is

given by t + s, where s is given by
s ¼ 1

a0ðtÞ
log

1

r1

� �
: ð4Þ
The index j for the next reaction is given by the smallest integer satisfying
Xj

l¼1

alðtÞ > r2a0ðtÞ: ð5Þ
The system states are updated by X(t + s) = X(t) + mj. Then the simulation proceeds to the next occurring
time, until it reaches the final time.
3. Stochastic partial equilibrium assumption

Traditionally the partial equilibrium assumption assumes that some fast reactions are always in equilib-

rium. In the deterministic regime, the equilibrium among the fast reactions is formulated as algebraic

constraints. The involved states always satisfy these constraints. In the stochastic regime, even when the
reactions are in equilibrium, the states may not satisfy the constraints. Instead, the distributions of these

states are temporarily steady.

In order to distinguish the fast reaction channels and slow reaction channels, we re-label them so that

R = (Rf,Rs), where Rf ¼ fRf
1; . . . ;R

f
M f
g represents the set of fast reaction channels and Rs ¼ fRs

1; . . . ;R
s
M s
g

represents the set of slow reaction channels, where Mf + Ms = M. We define a fast species to be any species

whose population gets changed by some fast reaction. Otherwise it is called a slow species. We re-label the N

species: S = (Sf,Ss), where Sf ¼ fSf
1; . . . ; S

f
N f
g is the set of fast species and Ss ¼ fSs

1; . . . ; S
s
N s
g is the set of

slow species, where Nf + Ns = N. The state vector is similarly subscripted as X = (Xf, Xs). Note that the
populations of fast species can be altered by slow reactions, but the populations of slow species cannot

be altered by fast reactions. The fast and slow reaction propensity functions will similarly be denoted as
afjðxÞ ¼ afjðxf ; xsÞ; j ¼ 1; . . . ;M f ;

asjðxÞ ¼ asjðxf ; xsÞ; j ¼ 1; . . . ;M s:
ð6Þ
The corresponding fast and slow reaction state-change vectors now appear as
mfj ¼ mff1j; . . . ; m
ff
N f j

� �
; j ¼ 1; . . . ;M f ;

msj ¼ mfs1j; . . . ; m
fs
N f j

; mss1j; . . . ; m
ss
N sj

� �
; j ¼ 1; . . . ;M s:

ð7Þ
Note that by definition, msfij ¼ 0. We have dropped those zero components from mf.
Fast reactions occur much more frequently than slow reactions. To simplify the analysis we will first fo-

cus on the influence of fast reactions. We construct a virtual system V with only fast reactions Rf and fast

species Sf. The populations of the fast species in the virtual system are represented by the virtual state var-

iable X̂
fðtÞ. By definition, X̂

fðtÞ is composed of the same fast state variables as Xf(t) but it evolves under the

influence of only the reactions Rf; in other words, X̂
fðtÞ is Xf(t) with all the slow reaction channels turned off.

X̂
fðtÞ is a more tractable process than X(t) because it has fewer species and fewer reaction channels.
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The reactions in the virtual system occur very fast. We assume that the stochastic partial equilibrium is

quickly reached in the virtual system. This assumption involves two aspects. First, the virtual system has a

stochastic partial equilibrium state. Note that the terminology stochastic partial equilibrium differs somewhat

in meaning from partial equilibrium in the deterministic regime. On the one hand, it is stochastic. The vir-

tual state variable X̂
fðtÞ keeps changing. But the distribution of X̂

fðtÞ remains unchanged. On the other
hand, it is a partial equilibrium for the original system. Although the distributions of X̂

fðtÞ remain un-

changed by the fast reactions, they can be changed by the occurrence of slow reactions. The reason is that

slow variables are considered as parameters in the virtual system. Upon the occurrence of a slow reaction

event, slow variables get changed. The equilibrium state of X̂
fðtÞ is also disturbed. After that, the stochastic

partial equilibrium is quickly resumed at a new level. We use X̂
fð1Þ to represent the fast variables which

have unchanged distributions at the stochastic partial equilibrium state of the virtual system.

Second, compared with the occurrence time of the slow reactions, the transient time srelax (called the

relaxation period) for the virtual system V to reach equilibrium is negligible. srelax is an important charac-
teristic of the virtual system. In the virtual system, when the fast reactions reach stochastic partial equilib-

rium, an important stochastic property is that after a relaxation period srelax, X̂
fðtÞ and X̂

fðt þ srelaxÞ can be

considered as independent random variables with the same distribution as X̂
fð1Þ. If srelax is negligible com-

pared with the timescale of the slow reactions, the virtual system V can be considered to always remain at

the stochastic equilibrium state. We then treat X̂
fðtÞ at different times t as independent random variables

with the same distribution as X̂
fð1Þ.

To illustrate the idea of stochastic partial equilibrium, Example 3.1 shows a simple virtual system and

the corresponding stochastic equilibrium behavior.

Example 3.1. A typical biochemical reaction has the form
S1 þ S2 $ S3 ð8Þ

with the corresponding propensity functions a1(X) = k1x1x2, a2(X) = k�1x3, where Xi(t) is the state variable

for the population of species Si. We choose the coefficients k1 = 1, k�1 = 10 and initial conditions

x1(0) = 10, x2(0) = x3(0) = 100. Suppose these two reaction channels are fast reactions. When a1(X) � a2(X),

the system is at the stochastic partial equilibrium state. Fig. 1 shows the plot of X1(t) from time 0 to time 3

in one SSA simulation. The state keeps changing with time. Fig. 2 shows the histogram of X1 at time T = 1

(plot with �o�) and T = 2 (plot with �+�) from an ensemble of 10,000 SSA simulations. The distribution of the

state remains the same at different times, which is also the distribution of X̂ 1ð1Þ. Moreover, Fig. 2 also

shows the distribution of X1(ti) with ti = 0.01*i for i = 0, . . ., 10,000 (plot with �*�). It has the same distribu-
tion as X̂ 1ð1Þ.
4. Multiscale stochastic simulation algorithm

Utilizing the stochastic partial equilibrium assumption, we can avoid detailed simulation of the fast reac-

tions. Two methods can be applied. One is to find the distribution at the partial equilibrium and generate

random numbers according to that distribution. For some simple systems, this method is rigorous and effi-
cient [18]. But in the general case, finding the distribution for the partial equilibrium state is not easy. In this

section we will show that, with the stochastic partial equilibrium assumption, only the mean value of the

propensity functions is needed for the slow reaction channels.

Our purpose is to perform stochastic simulation on the slow reactions without an expensive simulation

of the fast reactions. The critical step is to calculate the propensity functions for the slow reactions. If a

slow reaction involves only slow species, the propensity function is calculated exactly the same as for the

original SSA. But when a fast species is involved, how can we use the stochastic partial equilibrium
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assumption to calculate the corresponding propensity function? To solve this problem, we begin with a

new formula for the propensity function for slow reaction channels when at least one of the reactants is a

fast species.

Define P s
0ðs j xf ; xs; tÞ ¼ the probability that, given X(t) = (xf,xs), no slow reaction channel fires during

[t, t + s), and as0ðX Þ ¼
PM s

j¼1a
s
jðX Þ. During the time interval [t, t + s) many fast reactions fire, which alters

the fast variable Xf. We will not simulate the fast reactions. Instead we take Xf at time s as a random var-

iable. (Since no slow reaction fires during this period, Xf(t) is the same as X̂
fðtÞ.) According to the definition

of as0, under the condition that X fðsÞ ¼ xf
0
, the probability that one slow reaction will occur in the next infin-

itesimal time interval [s,s + ds) is as0ðxf
0
; xsÞ ds. Thus the total probability that one slow reaction will occur

in the next infinitesimal time interval [s,s + ds) is given by
Eðas0ðX f ; xsÞ j xf ; xsÞ ds ¼
X
xf 0

P ðX fðsÞ ¼ xf
0 j xf ; xsÞas0ðxf

0
; xsÞ ds; ð9Þ
where E(Æjxf,xs) and P(Æjxf,xs) are the conditional mean and probability, under the condition that

X(t) = (xf,xs). Let the time ds be so small that in the next infinitesimal time interval [s,s + ds), at most

one slow reaction can fire. Then we have
P s
0ðsþ ds j xf ; xs; tÞ ¼ P s

0ðs j xf ; xs; tÞð1� Eðas0ðX fðsÞ; xsÞ j xf ; xsÞ dsÞ: ð10Þ

Solving (10), we obtain
P s
0ðs j xf ; xs; tÞ ¼ exp �

Z tþs

t
E as0ðX fðlÞ; xsÞ j xf ; xs
� �

dl

� �
: ð11Þ
We define the next slow reaction density function p 0(s, jjxf,xs, t). p 0(s, jjxf,xs, t) ds is the probability that, given
X(t) = (xf,xs), the next slow reaction will occur in the infinitesimal time interval [t + s, t + s + ds) and will be

an Rs
j reaction. Then (11) leads to
p0ðs; j j xf ; xs; tÞ ¼ E asjðX fðsÞ; xsÞ j xf ; xs
� �

exp �
Z tþs

t
E as0ðX fðsÞ; xsÞ j xf ; xs
� �� �

: ð12Þ
Next, we apply the stochastic partial equilibrium assumption. Assuming that the virtual system is at partial
equilibrium and srelax is small compared to s, Xf(s) can be taken as X̂

fð1Þ. Thus (12) becomes
p0ðs; j j xf ; xs; tÞ ¼ EðasjðX fð1Þ; xsÞ j xf ; xsÞ exp �sEðas0ðX fð1Þ; xsÞ j xf ; xsÞ
� �

: ð13Þ
Remark 4.1. (12) is a general formula, which does not depend on the stochastic partial equilibrium
assumption. It shows that the firing probability of the slow reactions is related to the mean value of the fast

species, which can be approximated by a deterministic system if the corresponding fast species are present

with a large population. Thus (12) provides a theoretical foundation for the hybrid methods [12,13]. (13) is

the simplified formula after applying the stochastic partial equilibrium assumption. It is valid when srelax of
the fast reactions is small compared to s. When s is close to srelax, (13) is biased. The magnitude of the bias is

related to the variance of the fast species. The important point concerning (13) is that for a small

population, we can use this method by taking the proper mean value. This allows us to generalize the work

[12,13] on hybrid methods to models where some species present with a small population are involved in
fast reactions, which is exactly the case for the HSR model.

The multiscale stochastic simulation algorithm (MSSA) is based on (13). Let �asjðxsÞ ¼ EðasjðX̂
fð1Þ;

xsÞ j xf ; xsÞ; �as0ðxsÞ ¼
PMs

j¼1�a
s
jðxsÞ. Then (11) can be rewritten as
P 0ðs j xf ; xs; tÞ ¼ expð��as0ðxsÞsÞ: ð14Þ
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Thus the time s that the next slow reaction will occur, starting at X(t) = (xf,xs), follows an exponential dis-

tribution with probability density function �as0ðxsÞ expð��as0ðxsÞsÞ. We note that this is very similar to Gilles-

pie�s SSA method except that a0(x) is replaced by �as0ðxsÞ. Once we obtain the value of �as0, we can use the

same Monte Carlo method to generate the random variable s. For a uniform random number r, s is given
by
s ¼ 1

�as0ðxsðtÞÞ
log

1

r

� �
: ð15Þ
The corresponding index j for the slow reaction channel which occurs at time t + s is generated according to

the distribution
p0ðj j xf ; xs; tÞ ¼
�asjðxsÞ
�as0ðxsÞ

: ð16Þ
Thus the MSSA is given as follows. We will discuss the details of each step in the next section.
4.1. Multiscale stochastic simulation algorithm

Given initial time t, initial state x0 and final simulation time T,

Step 1: Compute the partial equilibrium state for the virtual system V. Update the fast variables
X f ¼ X̂

fð1Þ.
Step 2: For j = 1, . . .,Ms, calculate �asjðxsÞ and �as0ðxsÞ.
Step 3: Generate two random numbers r1 and r2 in U(0,1). The time for the next slow reaction to fire is

given by t + s, where s is given by
s ¼ 1

�as0ðxsÞ
log

1

r1

� �
: ð17Þ
The index j of the next slow reaction is given by the smallest integer satisfying
Xj

j0¼1

�asj0 ðxsÞ > r2�as0ðxsÞ: ð18Þ
Step 4: If t + s > T, stop. Otherwise update the time t = t + s and states x = x + mj. Go to Step 1.
5. Implementation of the MSSA method

5.1. Estimating �asjðxsÞ

Estimating the �asjðxsÞ is the most difficult task in MSSA. Only for a very simple system can we derive an

analytic solution for the distribution of X̂
fðtÞ [18]. In the general case, we have to use an approximation.

There are five possible functional forms for �asjðxsÞ:
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If asjðxÞ is independent of xf ; then �asjðxsÞ ¼ asjðxÞ; ð19Þ

If asjðxÞ ¼ csjx
f
i ; then �asjðxsÞ ¼ csjhX̂

f

i i; ð20Þ

If asjðxÞ ¼ csjx
f
i x

s
i0 ; then �asjðxsÞ ¼ csjx

s
i0 hX̂

f

i i; ð21Þ

If asjðxÞ ¼
csj
2
xfi ðxfi � 1Þ; then �asjðxsÞ ¼

csj
2
hX̂ f

i ðX̂
f

i � 1Þi; ð22Þ

If asjðxÞ ¼ csjx
f
i x

f
i0 ; then �asjðxsÞ ¼ csjhX̂

f

i X̂
f

i0 i: ð23Þ
Here we use the notation
hf ðX̂ fÞi ¼ E f ðX̂ fð1ÞÞ j xf ; xs
� �

¼
X
xf 0

f ðxf 0 ÞP X̂
fð1Þ ¼ xf

0 j xf ; xs
� �

: ð24Þ
Note that hX̂ fðtÞi is defined under the conditional probability of X(t) = (xf,xs). Since the (xf,xs) is stochas-

tic, ÆXf(t)æ also has a distribution. But when X(t) = (xf,xs) is fixed, hX̂ fðtÞi is a deterministic variable.

From all the possible forms, it is apparent that we need only the first two moments of X̂
fð1Þ. But since

the second moment is hard to calculate, if possible we will use only the mean value. For (19)–(21), we can

directly use the mean for the virtual fast variable hX̂ fi. For (22) and (23), an approximation is needed. We

will use the mean value for the virtual fast variable. For (22), we use
�asjðxsÞ �
csj
2
hX̂ f

i i
2
: ð25Þ
This is for the reaction type Sf
i þ Sf

i ! Sj (dimerization reaction). Note that we use hX̂ f

i i
2
instead of

hX̂ f

i iðhX̂
f

i i � 1Þ. When the population of the fast variable Sf
i is large, this is a good approximation. Special

attention must be paid when the population of Sf
i is very small. In particular, the mean value can be less

than one. Thus hX f
i iðhX f

i i � 1Þ can be negative. There is no general way to efficiently compute �asjðxsÞ in this

case. In many practical problems, we can assume a Poisson distribution for X f
i . Then h½X f

i �
2i ¼ hX f

i i
2 þ hX f

i i.
We have
�asjðxsÞ ¼
csj
2
hX̂ f

i ðX̂
f

i � 1Þi ¼
csj
2
hX̂ f

i i
2
: ð26Þ
Thus we can use (25) to replace (22). Interestingly, this is the function that is used in the deterministic case.

The resulting system is then very like the one given by the hybrid methods. But this Poisson distribution

assumption may not be always true. Further study is needed in that case. For (23), we use
�asjðxsÞ � csjhX̂
f

i ihX̂
f

i0 i: ð27Þ
This approximation is valid when at least one of the reactants has a large population. In the case where

both reactants are fast species with small population and they are strongly correlated, this approxima-

tion can lead to some error. So far we do not have an efficient way to deal with that case. Fortunately,
this seems unlikely to occur, which has so far been bourne out in our experience with practical

problems.

With (22) and (23) replaced by (25) and (27), we need only to estimate hX̂ fi. Algebraic equations are de-

rived for hX̂ fi according to the equilibrium law and conservation law. The equilibrium law requires the fast

reactions to reach equilibrium. The conservation law applies to the virtual system. These two laws are

usually obvious and are widely used in many applications. Note that now the equations are very similar

to the equations in the deterministic regime. But the probability interpretation is different. The variables

here are the means of X̂
fð1Þ, not the concentrations for the state variables. Also, they are applied only
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to the virtual system, which usually has only mono-stable distributions.1 Moreover, special attention should

be paid if the fast reactions involve dimerization reactions. S1 þ S1 $ S2, where the propensity functions

are given by a1ðxÞ ¼ c1
2
x1ðx1 � 1Þ and a2(x) = c2x2. The equilibrium law given by the deterministic equations

is
1 Th
2 We

were o
c1
2
x21 ¼ c2x2; ð28Þ
while the MSSA method requires
c1
2
x1ðx1 � 1Þ ¼ c2x2: ð29Þ
When x1 is large, (28) is not much different from (29). But when x1 is small, (28) is no longer valid. We will

see such an example in Section 6.

Many other technical details are also involved in the implementation of the MSSA method. In the fol-

lowing we will briefly discuss some important issues. We will use the example from the stochastic simulation

of the HSR model described earlier to illustrate the main points.

5.2. Solving the partial equilibrium equations

5.2.1. Identifying the fast reaction channels

How should we determine which are the fast reaction channels? In general, this remains an open ques-

tion. For a biologist, those channels can be identified from experiments or experience. In the general case,

the magnitude of the propensity function a can be used. But, for example, when one of the fast species

switches between one and zero very rapidly, the corresponding propensity alternates between a large num-
ber and zero. When it is at zero, that reaction channel could be put into the group of slow reaction chan-

nels. Our practical approach is to run the full SSA simulation once or a few times and record the number of

times that each reaction channel occurs. The most frequently occurring channels are the fast reaction chan-

nels. Determining how many fast reaction channels we should pick to guarantee the validity of the partial

equilibrium assumption is a topic for future research.

There are 61 reaction channels and 28 species in the HSR model.2 We ran the SSA once and recorded the

number of times each reaction channel fired. Six reaction channels were determined to be fast reactions.

These six reaction channels fired 5.9 · 107 times, while the total number of firings for all the reaction chan-
nels was 6.2 · 107. The next most frequent reaction fired 7.7 · 105 times. Thus the six most frequently firing

reaction channels take 94.4% of the total number of reaction firings. These six reactions are:
r32 þ HsLvu $ r32 : HsLvu; ð30Þ

r32 þ DNAK $ r32 : DNAK; ð31Þ

RNAP þ D $ RNAP : D; ð32Þ

where r32 and RNAP have small populations.

5.2.2. The stochastic partial equilibrium approximation

Once the fast reaction channels have been determined, the algebraic equations are given by the equilib-

rium law and the conservation law.
is is a consequence of the assumption that srelax is small. For a bistable system, the relaxation time srelax will be large.

obtained the reaction channels and the corresponding parameters for this model from Kurata et al. [8]. Many of the parameters

btained from experiments, and are not known with a great deal of certainty.
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For the HSR model, eight species are involved in the six (three pairs) fast reaction channels. There are

three equations which arise from the equilibrium law
hr32i � hHsLvui � K1hr32 : HsLvui;
hr32i � hDNAKi � K2hr32 : DNAKi;
hRNAP i � hDi � K3hRNAP : Di;

ð33Þ
where Ki are the ratios of the reaction rates (the backward reaction rates over the forward reaction rates)

for the reactions (30)–(32). We have five equations from the conservation laws of the six reaction channels.
hr32i þ hr32 : HsLvui þ hr32 : DNAKi ¼ C1;

hHsLvui þ hr32 : HsLvui ¼ C2;

hDNAKi þ hr32 : DNAKi ¼ C3;

hRNAP i þ hRNAP : Di ¼ C4;

hDi þ hRNAP : Di ¼ C5;

ð34Þ
where Ci, i = 1, . . ., 5, are constants for the virtual system. They could be changed by the slow reactions. The

conservation law is valid only for the virtual system of the six fast reaction channels.

Eqs. (33) and (34) can be solved by Newton iteration. Because the virtual system is solved at almost every

MSSA step, it is important to make the system size as small as possible. Since the conservation law yields
linear equations, it is often used to reduce the size of the system. We chose ÆDNAKæ, Ær32æ and ÆRNAPæ as
free variables. Then
hr32 : DNAKi ¼ C3 � hDNAKi;
hr32 : HsLvui ¼ C1 � C3 þ hDNAKi � hr32i;
hHsLvui ¼ C2 � C1 þ C3 � hDNAKi þ hr32i;
hRNAP : Di ¼ C4 � hRNAP i;
hDi ¼ C5 � C4 þ hRNAP i:

ð35Þ
Substituting (35) into (33), we obtained three nonlinear equations with three variables. Newton�s method

was then applied to this system. In the general case, the equations above can be automatically generated

by symbolic computation.

5.2.3. Michaelis–Menten approximation

If we have further knowledge of the system we may be able to simulate it more efficiently. As introduced
in Section 1, the populations of the species have a multiscale nature. Based on a knowledge of the scales of

the species populations, we can reduce the cost for solving the partial equilibrium equations. For example,

for ÆRNAPæ Æ ÆDæ = K3ÆRNAP:Dæ, since we know that the population of D is several orders of magnitude

larger than the free RNAP, we may treat ÆDæ as a constant temporarily. Then from ÆRNA-

Pæ + ÆRNAP:Dæ = C4 and ÆRNAPæ Æ ÆDæ = K3ÆRNAP:Dæ, we have
hRNAP i ¼ K3

K3 þ hDiC4: ð36Þ
This is also known as the Michaelis–Menten [22,23] approximation. Then we can directly solve for ÆRNAPæ
without Newton iteration.

We note that this procedure requires prior knowledge about the scales of the system, so we will present

numerical results both for using this approximation and not.
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5.3. The stochasticity of the fast species

In the MSSA method, after solving the algebraic equations of the virtual system we obtain hX̂ fi instead
of Xf(t) itself for the fast species. As mentioned before, hX̂ fi is affected by the slow reactions. For an ensem-

ble of many MSSA simulations, hX̂ fi will have a stochastic distribution. At this point, the distribution will
not be accurate because it does not reflect the randomness of the fast reaction channels. But for the full SSA

model, the stochasticity of the fast species is mostly affected by the slow reactions. Since the MSSA method

captures the stochasticity of the slow reactions very well, for the fast species the distribution obtained from

the MSSA method will be close to the distribution obtained from the SSA method. In most cases we are

concerned only with the distributions of some slow species. The value we have for hX̂ fi is good enough

for that purpose. If in some special situations we need an accurate distribution of the fast species, we

can use the down shifting method, which was proposed in Ref. [11]. In the down shifting method, we use

the MSSA method until the time is close to the output time. Then we change to the full SSA method
for a short period of time (about twice the relaxation time srelax) just prior to the output time. This proce-

dure regenerates the distribution for the fast species. The fact that the underlying kinetics is Markovian or

‘‘past-forgetting’’ is important in being able to apply such a procedure.
6. Numerical examples

Numerical results for two examples are presented here to demonstrate the efficiency and accuracy of the
MSSA method. The simulations were performed on a 1.4 GHz Pentium IV Linux workstation.

Example 6.1 (Heat shock response model). As described in Section 5, we took six reaction channels as the

fast reactions for the HSR model. These six most frequently occurring reaction channels account for 94.4%

of the total number of reaction firings. With T = 500 as the final time, the original SSA simulation takes
90 s per run (9.00 · 106 s, or about 10 days for 10,000 runs). Assuming the six reaction channels to be in

stochastic partial equilibrium, we applied the MSSA method. We used Newton�s method to solve the

nonlinear equations, as described in Section 5.2.2. The average simulation time was 6.70 s for one MSSA

simulation, yielding 6.70 · 104 s, or about 18 h for 10,000 runs. After further simplification using the

Michaelis–Menton approximation, the time was 5.25 s for one MSSA simulation. We will present the

accuracy comparison in the case of 12 fast reactions described below.

To obtain an even more efficient simulation of the HSR model, in the next series of numerical results we

chose 12 reaction channels as the fast reactions. These 12 reactions fire 6.14 · 107 times, which is 99% of the
total number of times for all reaction channels. Thus we can expect to reduce the simulation time to about

1% of the original simulation time. Conservation laws and equilibrium laws were used to construct the

algebraic equations. The Michaelis–Menton approximation was also applied, based on our knowledge of

the scales of the species. The MSSA method takes about 1 s per run (10,000 runs of the MSSA take about

3 h). Note here that the time is very close to 1% of the original time. The overhead from solving the

nonlinear algebraic equation is minimized by the Michaelis–Menton approximation. In a further

experiment, in order to obtain an accurate distribution for the fast species we applied the down shifting

method. To do this, we used MSSA until t = 499 and then changed to the original SSA from t = 499–500.
The MSSA method with down shifting takes 1.4 s per run (10,000 runs take about 4 h).

The time comparison shows that the MSSA method is much more efficient than the original SSA

method. To verify the accuracy of the MSSA method, we generated a histogram plot of 10,000 runs for

each method. We used 12 fast reactions for the MSSA method in the following comparison. For the slow

species, MSSA always generates a histogram very close to the original SSA. For the fast species, MSSA

without downshifting generates a close distribution but some difference is observed. With the down
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shifting method, this difference is no longer observed. Fig. 3 shows the histogram for a slow species

mRNA(DNAK) and a fast species DNAK with 10,000 runs of the original SSA and the MSSA methods

with and without down shifting. The distribution of the fast species is totally restored with the down

shifting method.

Example 6.2 (Slow dimerization reaction of a fast species with a small population). We consider
Fig. 3.

down

the HS
S1 $ S2;

S1 þ S1 ! S3;
ð37Þ
where the propensity functions are given by a1 = 200x1, a�1 = x2 and a2 = x1(x1 � 1), x1(0) = 0, x2(0) = 100,

x3(0) = 0. Here the first two reversible reactions are the fast channels. The final time is T = 20. The algebraic

equations for this simple system are given by
200hX 1i ¼ hX 2i; hX 1i þ hX 2i ¼ 100� 2X 3ðtÞ: ð38Þ

Note that X3(t) is treated as a constant in the virtual system but its value changes with every occurrence of

the slow reaction. Solving (38) gives hX 1i ¼ 100�2X 3ðtÞ
201

< 1. Since a2 = X1(X1 � 1), if we use the mean value of

X1 we can obtain a negative propensity. Assuming a Poisson distribution for X1, we have Æa2æ = ÆX1æ2. Fig. 4
shows the distribution of X3 computed by the SSA method and the MSSA method with stochastic partial

equilibrium assumption. They match very well. Fig. 5 shows the distributions of X2 generated by the

original SSA and the hybrid SSA method with or without the down shifting method. We can see that with

the down shifting method, the distribution of X2 has been totally restored.

Example 6.3 (Fast dimerization: a case where the deterministic equation fails). Consider
A ! S1;

S1 þ S1 $ S2;

S2 ! S3;

ð39Þ
where A represents a species with constant population, the propensity functions for the reactions are given

by a1 = 1, a2 = 100x1(x1 � 1), a�2 = 10x2 and a3 = x2, x1(0) = 0, x2(0) = 0, x3(0) = 0. Here the reversible

dimerizations S1 þ S1 $ S2 are the fast channels. The final time is T = 20. The equilibrium law given by

the deterministic equation is
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x2 ¼ 10x21; ð40Þ

while the MSSA requires
x2 ¼ 10x1ðx1 � 1Þ: ð41Þ

Eq. (40) gives an incorrect value for x2 when x1 is small. The final distribution for S3 is then wrong. As

shown in Fig. 6, (41) generates the correct distribution for S3 while (40) does not. This example indicates

that we have to be very careful when applying the deterministic equations to the low population case.
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7. Conclusion and further discussion

In this paper, we have introduced the MSSA method with the stochastic partial equilibrium assumption.

This extends the hybrid methods [12,13] to the case where the population of the fast species may be small.

Implementation details have been briefly discussed. The MSSA is a promising method for efficient and
accurate simulation of stochastic biochemical systems.

In the formulation presented in this paper to solve the stochastic partial equilibrium states we need a full

list of fast reaction channels. But in many practical problems such a detailed list is not always available a

priori. We note that the stochastic partial equilibrium assumption does not actually depend on the knowl-

edge of a detailed list of fast reactions. As mentioned in Section 1, there is an alternative way to calculate

the distribution of equilibrium states which applies thermodynamic theory and uses a thermodynamic po-

tential, such as the entropy or the Gibbs energy (see [20,21]). Since the Gibbs energy may be determined

through experiments, this can be a practical way to apply the stochastic partial equilibrium assumption.
Our analysis provides a theoretical foundation for applying the thermodynamic method. There is a connec-

tion between the thermodynamic method and the method introduced in this paper. If both the full list of

fast reaction channels and the Gibbs energy values are known, and the Gibbs energy values and the reac-

tion rates of the fast reactions satisfy certain quantitative relations, numerical results given by both methods

coincide. The difference between the methods is in the computational cost. The thermodynamic method is

advantageous when the number of possible states of the virtual system is not large. In this case, only a few

Gibbs energy values are needed. When the number of possible states increases, more Gibbs energy values

are needed. The computational complexity increases as well. Detailed discussion of this issue is beyond the
focus of this paper and will be investigated later.



Y. Cao et al. / Journal of Computational Physics 206 (2005) 395–411 411
Acknowledgments

This work was supported by the California Institute of Technology under DARPA Award No. F30602-

01-2-0558, by the Molecular Sciences Institute under contract No. 244725 with the Sandia National Lab-

oratories and the Department of Energy�s ‘‘Genomes to Life’’ Program, by the US Department of Energy
under DOE Award No. DE-FG02-04ER25621, by the National Science Foundation under NSF Award

CCF-0326576 and ACI00-86061, and by the Institute for Collaborative Biotechnologies through Grant

DAAD19-03-D-0004 from the US Army Research Office.
References

[1] A. Arkin, J. Ross, H.H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in phage k-infected E. Coli

cells, Genetics 149 (1998) 1633–1648.

[2] N. Fedoroff, W. Fontana, Small numbers of big molecules, Science 297 (2002) 1129–1131.

[3] H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci. USA 94 (1997) 814–819.

[4] H.H. McAdams, A. Arkin, It�s a noisy business!, Trends Genet. 15 (2) (1999) 65–69.

[5] D. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput.

Phys. 22 (1976) 403–434.

[6] D. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81 (1977) 2340–2361.

[7] K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebra Equations,

second ed., SIAM, Philadelphia, PA, 1996.

[8] H. Kurata, H. El-Samad, T. Yi, M. Khammash, J. Doyle, Feedback regulation of the heat shock response in E. Coli, in:

Proceedings of the 40th IEEE Conference on Decision and Control, 2001, pp. 837–842.

[9] H. Kurata, M. Khammash, J. Doyle, Stochastic analysis of the heat shock response in E. Coli, in: 3rd International Conference on

Systems Biology, 2002.

[10] D. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys. 115 (2001) 1716.

[11] M. Rathinam, L. Petzold, Y. Cao, D. Gillespie, Stiffness in stochastic chemically reacting systems: the implicit tau-leaping

method, J. Chem. Phys. 119 (2003) 12784–12794.

[12] E. Haseltine, J. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem.

Phys. 117 (2002) 6959–6969.

[13] T. Mattheyses, M. Simmons, Hybrid simulation of cellular behavior, Bioinformatics 20 (2004) 316–322.

[14] J.D. Ramshaw, Partial chemical equilibrium in fluid dynamics, Phys. Fluid 23 (1980).

[15] M. Rein, The partial-equilibrium approximation in reacting flows, Phys. Fluids A 4 (1992).

[16] L.A. Segel, M. Slemrod, The quasi-steady-state assumption: a case study in perturbation, SIAM Rev. 31 (1989).

[17] C. Rao, A. Arkin, Stochastic chemical kinetics and the quasi steady-state assumption: application to the Gillespie algorithm, J.

Chem. Phys. 118 (2003) 4999–5010.

[18] Y. Cao, D. Gillespie, L. Petzold, The slow-scale stochastic simulation algorithm, J. Chem. Phys. 122 (1) (2005) 014116.

[19] C.W. Gardiner, Handbook of Stochastic Methods, for Physics, Chemistry and the Natual Sciences, third edition., Springer,

Berlin, 2003.

[20] G. Ackers, A. Johnson, M. Shea, Quantitative model for gene regulation by a lambda phage repressor, Proc. Natl. Acad. Sci.

USA (1982).

[21] M. Shea, G. Ackers, The or control system of bacteriophage lambda, J. Mol. Biol. (1985).

[22] C. Lin, L. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, SIAM, Philadelphia, 1988.

[23] J.M. Murray, Mathematical Biology, second ed., Springer, Berlin, 1993.


	Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems
	Introduction
	Background
	Stochastic partial equilibrium assumption
	Multiscale stochastic simulation algorithm
	Multiscale stochastic simulation algorithm

	Implementation of the MSSA method
	Estimating  {\bar{a}}_{j}^{s}( {x}^{s})
	Solving the partial equilibrium equations
	Identifying the fast reaction channels
	The stochastic partial equilibrium approximation
	Michaelis ndash Menten approximation

	The stochasticity of the fast species

	Numerical examples
	Conclusion and further discussion
	Acknowledgments
	References


